0=50x-16x^2+20

Simple and best practice solution for 0=50x-16x^2+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=50x-16x^2+20 equation:



0=50x-16x^2+20
We move all terms to the left:
0-(50x-16x^2+20)=0
We add all the numbers together, and all the variables
-(50x-16x^2+20)=0
We get rid of parentheses
16x^2-50x-20=0
a = 16; b = -50; c = -20;
Δ = b2-4ac
Δ = -502-4·16·(-20)
Δ = 3780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3780}=\sqrt{36*105}=\sqrt{36}*\sqrt{105}=6\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-6\sqrt{105}}{2*16}=\frac{50-6\sqrt{105}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+6\sqrt{105}}{2*16}=\frac{50+6\sqrt{105}}{32} $

See similar equations:

| -1/5n=-36 | | i+1/2+i-3/3=4 | | i+1/2+1-3/3=4 | | 0=-16t^2+64t+32 | | 7=-x+14 | | 8a-7=4a9 | | 2x+5+x=250 | | x/12=22 | | 80,000(1/4)^t=33750 | | 32y=4 | | 33,750(4)^t=80,000 | | y+-7=14 | | 9x-4+3x-7=25 | | 33,750(4)^t=80000 | | (15b-1)-7(2b+4)=-6 | | -4+6=-3(x+5) | | -4x+6=-3(x+5( | | (x+1)^2+(x)^2=145 | | 3/7y+5=-9 | | 49+7m=21 | | 100-6x=180 | | x+0.6x=115.54 | | 5n-15=3n+11 | | 110-6x-10=180 | | 21=z/2+17 | | 4x-60=2x+80= | | Y=2750x+15500 | | 129+3x=180 | | 2/9x=4/7 | | 129+3x=90 | | 110-x+2x+3x-10=180 | | 9x-7=16x+5 |

Equations solver categories